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Abstract:

This project presents a study in the potential for construction industry utilization of AI to manage risk of structural failure.  It proposes the use of an expert system and a knowledge base to produce a dynamic advisor or agent to aid engineers in the selection of materials.

Introduction/Background:
Artificial intelligence (AI) is the branch of computer science concerned with enabling computers to simulate such aspects of human intelligence as speech recognition, deduction, inference, creative response, the ability to learn from experience, and the ability to make inferences given incomplete information. Two common areas of artificial-intelligence research are expert systems and natural-language processing.  An expert system is program that contains much of the knowledge used by an expert in a specific field and that assists non-experts as they try to solve problems.  Expert systems contain a knowledge base expressed in a series of IF/THEN rules and an engine capable of using heuristics and drawing inferences from this knowledge base. The system prompts you to supply information needed to assess the situation and come to a conclusion.  Most expert systems express conclusions with a confidence factor, ranging from speculation to educated guess to firm conclusion.

A knowledge base is a form of database used in expert systems that contains the accumulated body of knowledge of human specialists in a particular field. The reasoning ability or problem-solving approach that the specialist would use is contained in the inference engine that forms another crucial part of an expert system.  A knowledge domain is the specific area of expertise to which an expert system is devoted.  Knowledge representation is the methodology that forms the basis for the decision-making structure in an expert system, usually taking the form of if-then rules.  A knowledge engineer is a computer scientist who builds an expert system by acquiring the needed knowledge and translating it into a program.

Fuzzy logic is a form of logic used in some expert systems and other artificial-intelligence applications in which variables can have degrees of truthfulness or falsehood represented by a range of values between 1 (true) and 0 (false). With fuzzy logic, the outcome of an operation can be expressed as a probability rather than as a certainty. For example, in addition to being either true or false, an outcome might have such meanings as probably true, possibly true, possibly false, and probably false.  Heuristics is relating to or using a problem-solving technique in which the most appropriate solution of several found by alternative methods is selected at successive stages of a program for use in the next step of the program.

A production system is an approach to problem solving based on an "IF this, THEN that" approach that uses a set of rules, a database of information, and a "rule interpreter" to match premises with facts and form a conclusion. Production systems are also known as rule-based systems or inference systems.

Backward chaining is a form of problem solving that starts with a statement and a set of rules leading to the statement and then works backward, matching the rules with information from a database of facts until the statement can be either verified or proved wrong.  Backward Chaining is used in expert systems as a method of drawing inferences from IF/THEN rules. A backward chaining system starts with a question such as "How much is this property worth?" and searches through the system's rules to determine which ones allow the system to solve the problem and what additional data you must provide.  A backward-chaining expert system asks questions of the user, engaging him or her in a dialogue.  Forward Chaining is an inference technique that requires the user to state all the relevant data before processing begins. A forward chaining system starts with the data and works forward through its rules to determine whether additional data is required and how to draw the inference.  Backtracking is the ability of an expert system to try alternative solutions in an attempt to find an answer. The various alternatives can be viewed as branches on a tree: the program follows one branch and, if it reaches the end without finding what it seeks, backs up and tries another branch.

Problem:

Engineers, that work in the building industry, manage various risks involving building material failure.  The major risk is that, under certain conditions, the building materials that comprise a structure may fail.  A sobering example of building material failure is the case of the World Trade Center on September 11, 2001.  The primary cause of the structures’ failure was the excessive heat, exerted against the metal and masonry building materials that comprised the buildings’ structures, which was caused by the fires from the jets’ fuel.  The actual impacts of the jets were minor contributory causes of the collapses.

If a scenario such as the World Trade Center disaster were to be considered in the design of a building, artificial intelligence could be useful to the professionals charged with this responsibility.  An expert system in conjunction with a knowledgebase could be used as both a decision tool and a research tool.  A knowledge engineer base could assemble a knowledge base that contains a comprehensive collection of data gathered from previous experiences within the knowledge domain.  The logical design of the knowledge representation using a heuristic engine in an expert system could use this pool of data to provide answers to questions about various scenarios.  This research could be performed much more safely and efficiently inside of a computer than it could be performed in the real world.  Also, many more scenarios could be considered and results would be obtained much more quickly.

My initial proposition is that this type of system is both beneficial and feasible.  An expert system, such as this, could be integrated into design software to assure that generally accepted engineering and material selection procedures are adhered to.  Effectively using artificial intelligence within the construction engineering profession may produce safer building structures by reducing the risks involved with building material failures.

Procedure:

It’s my intention to prove that the use of artificial intelligence, specifically the above-mentioned expert system and knowledgebase, is beneficial by successfully applying a solution to a subset of the problem.  A subset will be used because a complete solution would require an unreasonable amount of resources to produce and would not be deliverable in the time allowed.  The tools used during this research will include:

· The SWI-Prolog computer program

· A decision tree that contains a subset of the thought processes of the human mind when considering this problem.

· A set of horn logic clauses that will be converted into Prolog code to allow computer to mimic a subset of the thought processes of a human.

· A set of data collected during physical trials that will be used to populate the knowledgebase of the expert system.

· Physical specimens of various sizes to collect data for entry into the knowledge base

The physical specimens are a collection of precisely milled pieces of wood of one eighth, one quarter, three eighths and one half inches in thickness. All specimens will be square stock (i.e. length = width) and the thickness data will be recorded in these one-eighth inch increments.  All specimens will be inspected and only used if they are free of visible defects.  Building materials should not be used unless they are fit for purpose.  They will be supported at each end over twelve to thirty-six inch spans in six-inch increments.  Weight will gradually be applied to the wood at the exact center of the span, until it fails.  Failure, in this experiment, is defined as breaking or deflection beyond one twelfth of the specimens span length.  A failure is one inch for a twelve-inch specimen and, two and one half inches for a thirty-inch specimen.  This instance will be recorded in the following format: break(XY,Z,W,F), where XY is the thickness, Z is the length, W is the weight at the breaking point, and F is the frequency of occurrence, for possible use in future program versions.  The data will be entered into the Prolog program in one sixty-fourth inch increments for size and length, and ounces for weight.  break(16,1152,116,2) means that a failure was observed at one quarter (16/64) inches in size, 18 (1152/64) inches in length, at 116 ounces of applied weight, and that two occurrences were recorded.
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To define a manageable subset, weight will be rounded to four-ounce increments and input data for queries will be chosen to reflect limitations of the trial group.  Using real numbers would consume too much processor time.  It’s evident that out of bound values will yield an opinion of “I do not know!”  The graphic to the left displays the apparatus for a trial condition.  The green bar is the specimen to be tested, with a thickness (XY) of one-half inch and a span (Z) of thirty-six inches. The blue triangles represent the supports and the red circle represents the weight suspended at the center of the span.  The frequency will also be recorded for completeness and possible future use.

The decision tree on the next page represents the logic in this program.  It defines the rules under which this program makes its evaluation of the question asked.  When designing these rules, I asked myself: “How would I answer this question?”  “Will this specimen break under these conditions?”  “Do I have enough information to render an opinion?”

In assessing the risk if failure in the wood, I know that IF an apparently much stronger and larger specimen fails, and specimens are much less likely to fail if they are much stronger and larger, THEN the risk of failure is much greater in a standard specimen.  Likewise, IF a much smaller specimen implies that a failure occurred on a much smaller and weaker specimen, THEN it’s much less [image: image11.wmf]36 in
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likely that a standard specimen will fail.  Similar inferences can be deduced from different spans and different weight values.  The queries are listed in the yellow boxes in the decision tree.

Drawing from the aforementioned conditions, I designed a six state-fuzzy logic answer set, on which all members of the domain will be represented. They are listed in the green boxes in the decision tree.  A definite answer means that a failure is certain and impossible means that a non-failure is certain.  A non-fuzzy logic system would use a formula to deduce a percentage based on the inputs but would not have the ability to learn new conditions and improve its decision-making ability.

From the decision tree and assumptions about what the values much larger, larger, similar, smaller and much smaller, I produced the following logical rules to be converted into the Prolog script.  Notice that there are floor and ceiling limits in the parenthesis next to some of the conditions.  This is to limit the scope of the domain of the search.  If no conditions are found that lead to a conclusion, the program replies: “I do not know”

willBreak is true

( definite is true


( probable is true


( maybe is true


( possible is true


(  impossible is true


(  'I do not know'

definite is true

( (muchLargerXY is true ( XY found is 16 or more units larger (limit 1024))

( (muchSmallerZ is true ( Z found is 768 or more units smaller (limit 0))


( (muchSmallerW is true ( W found is 8 or more units smaller (limit 0))

probable is true

( (largerXY is true ( XY found is 8 to 15 units larger)


( (smallerZ is true ( Z found is 384 to 767 units smaller)


( (smallerW is true ( W found is 4 to 7 units smaller)

maybe is true

( (similiarXYZW is true ( XY Z and W found are the same)


( (similiarXYUp is true ( XY found is 1 to 7 units larger)


( (similiarXYDown is true ( XY found is 1 to 7 units smaller)


( (similiarZUp is true ( Z found is 1 to 383 units larger)


( (similiarZDown is true ( Z found is 1 to 383 units smaller)


( (similiarWUp is true ( W found is 1 to 3 units larger)


( (similiarWDown is true ( W found is 1 to 3 units smaller)

possible is true

( (smallerXY is true ( XY found is 8 to 15 units smaller)

( (largerZ is true ( Z found is 384 to 767 units larger)

( (largerW is true ( W found is 4 to 7 units larger)

impossible is true

( (muchSmallerXY is true ( XY found is 16 or more units smaller (limit 0))


( (muchLargerZ is true ( Z found is 768 or more units larger (limit 1600))


( (muchLargerW is true ( W found is 8 or more units larger (limit 7680))
The Prolog script is listed in Appendix A.

After coding, the testing phase of development included unit, integration and system testing.  Boundary tests were used to check responses to queries that included values that were just below, on, and just above each of the boundary conditions that determine a desired response.

The table on the next page contains the data collected during the physical trials.  The first column contains the group, designated by the length Z of the specimen.  The second column contains the size XY of the specimen.  The next four columns contain the weights W of the recorded failure.  The last column contains the average weight of failure.  There are also four graphs that show the data collected in the trials.  Each graph is a given length showing a line increasing in size X as x increases and weight W as y increases.  The lines are consistent with the values that would be expected.
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Observation:

The evaluation is split into three testing subjects: infant, young, and mature.  The infant subject has no test data in its knowledge base.  It will always respond: “I do not know!”.  In the young subject, a small set of ten test data are randomly selected and entered.  They are listed on the next page.  Sometimes the program produces an opinion and sometimes it says: “I do not know!”  The mature subject has a complete set of data and contains the data from all of the trials.

Young subject’s knowledge base

1. break(16,768,216,1)

2. break(32,768,1556,1)

3. break(16,1152,116,2)

4. break(24,1536,376,1)

5. break(8,1536,0,4)

6. break(16,1920,12,2)

7. break(16,1536,60,1)

8. break(24,1536,320,1)

9. break(32,1536,696,1)

10. break(24,1152,564,1)

Each subject has been asked the ten questions listed below.  The responses are in the second columns.

Subject: Infant

	willBreak(32,768,500).
	I do not know!

	willBreak(8,768,500).
	I do not know!

	willBreak(16,384,700).
	I do not know!

	willBreak(32,1152,1000).
	I do not know!

	willBreak(16,1152,500).
	I do not know!

	willBreak(16,384,200).
	I do not know!

	willBreak(24,1152,300).
	I do not know!

	willBreak(15,768,232).
	I do not know!

	willBreak(30,2304,480).
	I do not know!

	willBreak(5,1536,0).
	I do not know!


Subject: Young

	willBreak(32,768,500).
	Evidence suggests that risk of break is impossible.

	willBreak(8,768,500).
	I do not know!

	willBreak(16,768,700).
	Evidence suggests that risk of break is definite.

	willBreak(32,1152,1000).
	I do not know!

	willBreak(16,1152,500).
	Evidence suggests that risk of break is definite.

	willBreak(16,200,200).
	Evidence suggests that risk of break is impossible.

	willBreak(24,1152,300).
	Evidence suggests that risk of break is impossible.

	willBreak(15,768,232).
	I do not know!

	willBreak(30,2304,480).
	I do not know!

	willBreak(5,1536,0).
	Evidence suggests that risk of break is maybe.


Subject: Mature

	willBreak(32,768,500).
	Evidence suggests that risk of break is impossible.

	willBreak(8,768,500).
	Evidence suggests that risk of break is definite.

	willBreak(16,768,700).
	Evidence suggests that risk of break is definite.

	willBreak(32,1152,1000).
	Evidence suggests that risk of break is definite.

	willBreak(16,1152,500).
	Evidence suggests that risk of break is definite.

	willBreak(16,768,200).
	Evidence suggests that risk of break is definite.

	willBreak(24,1152,300).
	Evidence suggests that risk of break is impossible.

	willBreak(15,768,232).
	Evidence suggests that risk of break is maybe.

	willBreak(30,2304,480).
	Evidence suggests that risk of break is maybe.

	willBreak(5,1536,0).
	Evidence suggests that risk of break is maybe.
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The data collected demonstrate this programs ability to learn with the addition of new data.  The infant as predicted didn’t know anything.  The young subject could not answer four of the inquiries, and one answer even conflicts with an answer obtained by the mature subject (highlighted in red).  The mature subject was able to answer all inquiries.  All of these inquiries were within the bounds of the mature programs knowledge base.  If any were out of bounds, the answer would have been: “I do not know!”

Conclusion:

The willBreak program uses a symbolic AI approach to finding a solution to its task.  It possesses a set of symbols in its knowledge base that represent a set of real world conditions.  It performs a heuristic search using pattern matching combined with a production system, and renders its opinion a posteriori from its knowledge of past events.  The opinion that is given by the system is a kind of fuzzy logic, in that it doesn’t just say yes or no.  This system has a non-monotonic logic structure.  The rules in this system that lead to ‘break is definite’ answers have priority over the other rules.  “I do not know!” has the least and is the default if no other solutions are found.

A traditional procedural program could use some sort of formula to solve this problem.  This formula could be derived by ‘curve fitting’ the x-y graph of the data collected to form a polynomial that closely approximates a solution.  Another traditional method is the use of tabular data to determine a solution.  These would be static and monotonic approaches to this problem.  These programs would only change if their underlying logic were to be adjusted by a programmer.

The willBreak program can change its own logic based on new data.  This system could be modified to perform its own dynamic curve fitting to project a priori estimates of conditions that are not feasible for physical experimentation due to scope or cost.  The downside to this dynamic approach is that the program can become corrupted by data that is collected from trials but is flawed because it greatly deviates from the norm.  In statistics this is known as an outlier.  In the above data table collected during the physical trials, there is an outlier (marked in green).  Normally a value such as this may be thrown out but I needed to introduce evidence that knowledge base is only as good as its data.

Systems like this, though much more comprehensive with respect to both logic and data, could act as an agents or advisors to both professionals and novices in selecting the proper size of structural components for building projects.  The system could be combined with design software such as CAD/CAM to automatically correct flaws that may be missed by human engineers, especially on very large projects.

The data structure of this program could be expanded to include other conditions that may affect the performance of structural materials.  These may include but are not limited to: age (A), temperature (T), humidity (H), location of load on span (L), angle of inclination (I), shape (S), environmental conditions such as high winds or excessive snow load (or other evenly distributed loads) (E), etc.  A sample data structure might look like:

willBreak(X,Y,Z,W,A,T,H,L,I,S,E).

This research included only a small subset of the functionality, input and output that would exist in a useable working platform.  It only considers a small subset of conditions in rendering an opinion.  A more comprehensive program would not just consider single instances of linear travel in the x y or z plane, which is used in this model.  It would consider many conditions relative to all planes at many angles, not just parallel or perpendicular to the norm.  All failure or breaking conditions that are within the sphere or area would be considered.  These can be represented n-space, where n can be nearly any number of dimensions only limited by the number of considered conditions, such as size, span, shape, etc.

It is my opinion that artificial intelligence can be used effectively to increase safety and reliability in the construction industry by aiding professionals in reducing the risk of structural failure.  A dynamic system may be able to uncover potentially high risk of failure, which may be missed in a traditional system, due to changing conditions.

Appendix A

/* This program is an Expert System that uses a decision tree and */

/* structure, and a knowledge base will learn to predict the risk */

/* of a piece of wood breaking. */

/* willBreak(XY,Z,W). */

:- dynamic break/4.

willBreak(XY,Z,W):-


definate(XY,Z,W);


probable(XY,Z,W);


maybe(XY,Z,W);


possible(XY,Z,W);


impossible(XY,Z,W);


write('I do not know!').

definate(XY,Z,W):-


add(16,XY,Sum),


muchLargerXY(Sum,Z,W);


sub(Z,768,Dif),


muchSmallerZ(XY,Dif,W);


sub(W,8,Dif),


muchSmallerW(XY,Z,Dif).

probable(XY,Z,W):-


add(8,XY,Sum),


I is 0,


largerXY(Sum,Z,W,I);


sub(Z,384,Dif),


J is 0,


smallerZ(XY,Dif,W,J);


sub(W,4,Dif),


K is 0,


smallerW(XY,Z,Dif,K).

maybe(XY,Z,W):-


sameXYZW(XY,Z,W);


add(XY,1,Sum),


I is 0,


similiarXYUp(Sum,Z,W,I);


sub(XY,1,Dif),


J is 0,


similiarXYDown(Dif,Z,W,J);


add(Z,1,Sum),


K is 0,


similiarZUp(XY,Sum,W,K);


sub(Z,1,Dif),


L is 0,


similiarZDown(XY,Dif,W,L);


add(W,1,Sum),


M is 0,


similiarWUp(XY,Z,Sum,M);


sub(W,1,Dif),


N is 0,


similiarWDown(XY,Z,Dif,N).

possible(XY,Z,W):-


sub(XY,8,Dif),


I is 0,


smallerXY(Dif,Z,W,I);


add(Z,384,Sum),


J is 0,


largerZ(XY,Sum,W,J);


add(W,4,Sum),


K is 0,


largerW(XY,Z,Sum,K).

impossible(XY,Z,W):-


sub(XY,16,Dif),


muchSmallerXY(Dif,Z,W);


add(Z,768,Sum),


muchLargerZ(XY,Sum,W);


sub(W,8,Dif),


muchLargerW(XY,Z,Dif).

muchLargerXY(XY,_,_):-


XY >= 1024,


!,fail.

muchLargerXY(XY,Z,W):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is definite.'),nl;


add(XY,1,SumXY),


muchLargerXY(SumXY,Z,W).

muchSmallerZ(_,Z,_):-


Z =< 0,


!,fail.

muchSmallerZ(XY,Z,W):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is definite.'),nl;


sub(Z,1,DifZ),


muchSmallerZ(XY,DifZ,W).

muchSmallerW(_,_,W):-


W =< 0,


!,fail.

muchSmallerW(XY,Z,W):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is definite.'),nl;


sub(W,1,DifW),


muchSmallerW(XY,Z,DifW).

largerXY(_,_,_,I):-


I >= 8,


!,fail.

largerXY(XY,Z,W,I):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is probable.'),nl;


add(I,1,SumI),


add(XY,1,SumXY),


largerXY(SumXY,Z,W,SumI).

smallerZ(_,_,_,I):-


I >= 384,


!,fail.

smallerZ(XY,Z,W,I):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is probable.'),nl;


add(I,1,SumI),


sub(Z,1,Dif),


smallerZ(XY,Dif,W,SumI).

smallerW(_,_,_,I):-


I >= 4,


!,fail.

smallerW(XY,Z,W,I):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is probable.'),nl;


add(I,1,SumI),


sub(W,1,Dif),


smallerW(XY,Z,Dif,SumI).

sameXYZW(XY,Z,W):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is maybe.'),nl.

similiarXYUp(_,_,_,I):-


I >= 7,


!,fail.

similiarXYUp(XY,Z,W,I):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is maybe.'),nl;


add(XY,1,SumXY),


add(I,1,SumI),


similiarXYUp(SumXY,Z,W,SumI).

similiarXYDown(_,_,_,I):-


I >= 7,


!,fail.

similiarXYDown(XY,Z,W,I):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is maybe.'),nl;


sub(XY,1,DifXY),


add(I,1,SumI),


similiarXYDown(DifXY,Z,W,SumI).

similiarZUp(_,_,_,I):-


I >= 383,


!,fail.

similiarZUp(XY,Z,W,I):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is maybe.'),nl;


add(Z,1,SumZ),


add(I,1,SumI),


similiarZUp(XY,SumZ,W,SumI).

similiarZDown(_,_,_,I):-


I >= 383,


!,fail.

similiarZDown(XY,Z,W,I):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is maybe.'),nl;


sub(Z,1,DifZ),


add(I,1,SumI),


similiarZDown(XY,DifZ,W,SumI).

similiarWUp(_,_,_,I):-


I >= 3,


!,fail.

similiarWUp(XY,Z,W,I):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is maybe.'),nl;


add(W,1,SumW),


add(I,1,SumI),


similiarWUp(XY,Z,SumW,SumI).

similiarWDown(_,_,_,I):-


I >= 3,


!,fail.

similiarWDown(XY,Z,W,I):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is maybe.'),nl;


sub(W,1,DifW),


add(I,1,SumI),


similiarWDown(XY,Z,DifW,SumI).

smallerXY(_,_,_,I):-


I >= 8,


!,fail.

smallerXY(XY,Z,W,I):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is possible.'),nl;


sub(XY,1,DifXY),


add(I,1,SumI),


smallerXY(DifXY,Z,W,SumI).

largerZ(_,_,_,I):-


I >= 384,


!,fail.

largerZ(XY,Z,W,I):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is possible.'),nl;


add(Z,1,SumZ),


add(I,1,SumI),


largerZ(XY,SumZ,W,SumI).

largerW(_,_,_,I):-


I >= 4,


!,fail.

largerW(XY,Z,W,I):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is possible.'),nl;


add(W,1,SumW),


add(I,1,SumI),


largerW(XY,Z,SumW,SumI).

muchSmallerXY(XY,_,_):-


XY =< 0,


!,fail.

muchSmallerXY(XY,Z,W):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is impossible.'),nl;


sub(XY,1,DifXY),


muchSmallerXY(DifXY,Z,W).

muchLargerZ(_,Z,_):-


Z >= 7680,


!,fail.

muchLargerZ(XY,Z,W):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is impossible.'),nl;


add(Z,1,SumZ),


muchLargerZ(XY,SumZ,W).

muchLargerW(_,_,W):-


W >= 1600,


!,fail.

muchLargerW(XY,Z,W):-


break(XY,Z,W,_),


write('Evidence suggests that risk of break is impossible.'),nl;


add(W,1,SumW),


muchLargerW(XY,Z,SumW).

/* Utility Functions */

sumList([I|Is],Sum):-


sumList(Is,IsSum),


Sum is I+IsSum.

sumList([ ],0).

sub(A,B,C):-


C is A - B.

add(A,B,C):-


C is A + B.

Appendix B

Mature Subjects Data

%% XY = 3/8

break(24,768,752,1).

break(24,768,816,1).

break(24,768,720,1).

break(24,768,792,1).

break(24,1152,560,1).

break(24,1152,552,1).

break(24,1152,512,1).

break(24,1152,564,1).

break(24,1536,376,1).

break(24,1536,324,1).

break(24,1536,320,1).

break(24,1536,340,1).

break(24,1920,248,1).

break(24,1920,320,1).

break(24,1920,304,1).

break(24,1920,272,1).

break(24,2304,160,1).

break(24,2304,216,1).

break(24,2304,192,1).

break(24,2304,176,1).

%% XY = 1/4

break(16,768,188,1).

break(16,768,216,1).

break(16,768,184,1).

break(16,768,232,1).

break(16,1152,104,1).

break(16,1152,24,1).

break(16,1152,116,2).

break(16,1536,80,1).

break(16,1536,72,1).

break(16,1536,64,1).

break(16,1536,60,1).

break(16,1920,12,2).

break(16,1920,16,2).

break(16,2304,8,4).

%% XY = 1/8

break(8,768,8,4).

break(8,1152,4,4).

break(8,1536,0,4).

break(8,1920,0,4).

break(8,2304,0,4).
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There are many fields that can benefit from a practical application of artificial intelligence.  The science of construction engineering, in particular the study of the strengths of building materials, is an important one.  I propose to study an AI program’s ability to learn about the strength of a material, wood in this case.  I will attempt to code a Prolog program that will learn to estimate the maximum amount of load (weight applied) that can be tolerated by a species of various dimensions over various spans (lengths between supports).  By collecting data from experimentation and asserting it into the program, I hope to demonstrate the program’s ability to predict the amount of load at which the specimen will fail.

One possible use for this kind of program or research is projecting failure rates of materials in situations where practical experimentation is not practical.  A procedural programming language could be used to estimate this event by using an equation to process values entered for a particular instance.  But this type of program is limited by its logically static structure.  An AI program can consider data entered by many trials and, over time, learn to become more accurate because of its logically dynamic nature.

I believe that this is a suitable topic because there is an opportunity to experience a melding of real world events with the logical operations represented within a computers processing.  I also believe that I have the experience with construction materials to produce the needed results.  Having formerly owned a construction company, I have many years experience in construction engineering and management.  In my opinion the research, design, experimentation, coding, documentation and oral presentation for this project should be complete in about five weeks.

Data will be collected through each step of this project and compiled into a report that will be used to produce an oral presentation with MS PowerPoint.  The report and presentation will contain graphical and tabular information to support my findings and conclusion.

I am aware of no research presently being performed with AI in construction engineering but intend to pursue Internet and library research to find similar work.  I intend to either prove or disprove the usefulness of AI to solve engineering construction problems, in particular the aforementioned.  If utility is found in artificial intelligence to solve problems of this nature, the result could possibly be safer construction practices by aiding engineers in the proper selection of dimensional building materials.
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				0.375		376		324		320		340		340

				0.5		592		664		696		596		637

		18 inches		0.125		4		4		4		4		4

				0.25		104		24		116		116		90

				0.375		560		552		512		564		547

				0.5		1056		932		1016		944		987

		12 inches		0.125		8		8		8		8		8

				0.25		188		216		184		232		205

				0.375		752		816		720		792		770

				0.5		1520		1556		1600		1476		1538
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				Size		Trial 1		Trial 2		Trial 3		Trial 4		Average

		36 inches		0.125		0		0		0		0		0

				0.25		8		8		8		8		8

				0.375		160		216		192		176		186

				0.5		424		480		448		472		456

		30 inches		0.125		0		0		0		0		0

				0.25		12		12		16		16		14

				0.375		248		320		304		272		286

				0.5		552		608		592		600		588

		24 inches		0.125		0		0		0		0		0

				0.25		80		72		64		60		69

				0.375		376		324		320		340		340

				0.5		592		664		696		596		637

		18 inches		0.125		4		4		4		4		4

				0.25		104		24		116		116		90

				0.375		560		552		512		564		547

				0.5		1056		932		1016		944		987

		12 inches		0.125		8		8		8		8		8

				0.25		188		216		184		232		205

				0.375		752		816		720		792		770

				0.5		1520		1556		1600		1476		1538
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